[Перевод] Grasp2Vec: обучение представлению объектов через захват с самостоятельным обучением

Люди с удивительно раннего возраста уже способны распознавать свои любимые объекты и поднимать их, несмотря на то, что их специально этому не учат. Согласно исследованиям развития когнитивных способностей, возможность взаимодействия с объектами окружающего мира играет критическую роль в развитии таких способностей, как ощущение и манипулирование объектами – к примеру, целенаправленный захват. Взаимодействуя с окружающим миром, люди могут учиться, исправляя собственные ошибки: мы знаем, что мы сделали, и учимся на результатах. В робототехнике такой тип обучения с самостоятельным исправлением ошибок активно исследуется, поскольку он позволяет роботизированным системам учиться без огромного количества тренировочных данных или ручной подстройки.

Мы в Google, вдохновившись концепцией постоянства объектов, предлагаем систему Grasp2Vec – простой, но эффективный алгоритм построения представления объектов. Grasp2Vec основан на интуитивном понимании того, что попытка поднять любой объект выдаст нам некоторую информацию – если робот захватит объект и поднимет его, то объекту нужно находиться в этом месте до захвата. Кроме того, робот знает, что если захваченный объект находится в его захвате, то, значит, объекта уже нет на том месте, где он был. Используя такую форму самостоятельного обучения, робот может научиться распознавать объект благодаря визуальному изменению сцены после его захвата.
Читать дальше → Source

You might also like:

Comment on this post

Loading Facebook Comments ...
Loading Disqus Comments ...

No Trackbacks.